41 research outputs found

    Complexity of Propositional Proofs under a Promise

    Get PDF
    We study -- within the framework of propositional proof complexity -- the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where ``many'' stands for an explicitly specified function \Lam in the number of variables nn. To this end, we develop propositional proof systems under different measures of promises (that is, different \Lam) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: 1. Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is \eps\cd2^n, for any constant 0<\eps<1. 2. There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn2^{\delta n} (and the number of clauses is o(n3/2)o(n^{3/2})), for any constant 0<δ<10<\delta<1.Comment: 32 pages; a preliminary version appeared in the Proceedings of ICALP'0

    Algebraic Proofs over Noncommutative Formulas

    Get PDF
    AbstractWe study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege, yielding a semantic way to define a Cook–Reckhow (i.e., polynomially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al. (1997) and Grigoriev and Hirsch (2003). We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). Given some fixed linear order on variables, an arithmetic formula is ordered if for each of its product gates the left subformula contains only variables that are less-than or equal, according to the linear order, than the variables in the right subformula of the gate. We show that PC over ordered formulas (when the base field is of zero characteristic) is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR), and admits polynomial-size refutations for the pigeonhole principle and Tseitinʼs formulas. We conclude by proposing an approach for establishing lower bounds on PC over ordered formulas proofs, and related systems, based on properties of lower bounds on noncommutative formulas (Nisan, 1991).The motivation behind this work is developing techniques incorporating rank arguments (similar to those used in arithmetic circuit complexity) for establishing lower bounds on propositional proofs

    The Strength of Multilinear Proofs

    Get PDF

    Uniform, integral and efficient proofs for the determinant identities

    Get PDF

    Generating Matrix Identities and Proof Complexity

    Get PDF
    Motivated by the fundamental lower bounds questions in proof complexity, we initiate the study of matrix identities as hard instances for strong proof systems. A matrix identity of d×dd \times d matrices over a field F\mathbb{F}, is a non-commutative polynomial f(x1,,xn)f(x_1,\ldots,x_n) over F\mathbb{F} such that ff vanishes on every d×dd \times d matrix assignment to its variables. We focus on arithmetic proofs, which are proofs of polynomial identities operating with arithmetic circuits and whose axioms are the polynomial-ring axioms (these proofs serve as an algebraic analogue of the Extended Frege propositional proof system; and over GF(2)GF(2) they constitute formally a sub-system of Extended Frege [HT12]). We introduce a decreasing in strength hierarchy of proof systems within arithmetic proofs, in which the ddth level is a sound and complete proof system for proving d×dd \times d matrix identities (over a given field). For each level d>2d>2 in the hierarchy, we establish a proof-size lower bound in terms of the number of variables in the matrix identity proved: we show the existence of a family of matrix identities fnf_n with nn variables, such that any proof of fn=0f_n=0 requires Ω(n2d)\Omega(n^{2d}) number of lines. The lower bound argument uses fundamental results from the theory of algebras with polynomial identities together with a generalization of the arguments in [Hru11]. We then set out to study matrix identities as hard instances for (full) arithmetic proofs. We present two conjectures, one about non-commutative arithmetic circuit complexity and the other about proof complexity, under which up to exponential-size lower bounds on arithmetic proofs (in terms of the arithmetic circuit size of the identities proved) hold. Finally, we discuss the applicability of our approach to strong propositional proof systems such as Extended Frege.Comment: 46 pages, 1 figur

    Håstad‘s Separation of Constant-Depth Circuits Using Sipser Functions

    Get PDF

    Complexity of Propositional Proofs Under a Promise

    Get PDF
    Abstract. We study – within the framework of propositional proof complexity – the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where “many ” stands for an explicitly specified function Λ in the number of variables n. To this end, we develop propositional proof systems under different measures of promises (that is, different Λ) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: (1) Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is ε·2n, for any constant 0 &lt; ε &lt; 1. (2) There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn (and the number of clauses is o(n3/2)), for any constan
    corecore